LOS 10 CASOS DE FACTORIZACION
FACTORIZACION
Es una técnica que consiste en la descripción de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc.) en forma de producto.
Existen diferentes métodos de factorización, dependiendo de los objetos matemáticos estudiados; el objetivo es simplificar una expresión o reescribirla en términos de «bloques fundamentales», que recibe el nombre de factores, como por ejemplo un número en números primos, o un polinomio en polinomios irreducibles.
FACTORES
Se llama factores o divisores de una expresión algebraica a las expresiones algebraicas que multiplicadas entre si dan como producto la primera expresión.
Ejemplo:
a(a + b) = a2 + ab
(x + 2) (x +3) = x2 + 5x + 6
CASOS DE FACTORIZACIÓN
CASO I
CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
Factor Común Monomio:
Ejemplo 1:
14x2 y2 - 28x3 + 56x4
R: 14x2 (y2 - 2x + 4x2)
Ejemplo 2:
X3 + x5 – x7 = R: x3 (1 + x2 - x4)
Factor Común Polinomio:
Ejemplo 1:
a(x + 1) + b(x + 1)
R: (x + 1) (a +b)
Ejemplo 2:
(3x + 2) (x + y – z) – (3x + 2) - (x + y – 1)( 3x +2)
R: (3x + 2) (x + y – z) – (3x + 2)(1) – ( x - y +1)( 3x +2)
(3x + 2) (x + y – z -1 –x - y + 1)
-z ( 3x +2)
CASO II
FACTOR COMÚN POR AGRUPACIÓN DE TERMINO
Ejemplo 1:
(a2 + ab) + (ax + b)
a(a + b) + x(a +b)
(a + b) (a +x)
Ejemplo 2:
4am3 – 12 amn – m2 + 3n
= (4am3 – 12amn) – (m2 + 3n)
=4am (m2 – 3n) – (m2 + 3n)
R: (m2 – 3n)(4am-1)
CASO III
TRINOMIO CUADRADO PERFECTO
Ejemplo 1;
a2 – 2ab + b2
Raíz cuadrada de a2 = a
Raíz cuadrada de b2 = b
Doble producto sus raíces
(2 X a X b) 2ab (cumple)
R: (a – b) 2
Ejemplo 2:
49m 6– 70 am3n2 + 25 a2n4
Raíz cuadrada de 49m6 = 7m3
Raíz cuadrada de 25a2n4 = 5an2
Doble producto sus raíces
(2 X 7m3 X 5a2n2) = 70am3 n2 (cumple)
R: (7m – 5an2)
CASO ESPECIAL
Ejemplo 1:
a2 + 2a (a – b) + (a – b) 2
Raíz cuadrada de a2 = a
Raíz cuadrada de (a – b) 2 = (a – b)
Doble producto sus raíces
(2 X a X (a – b) = 2a(a – b) (cumple)
R: (a + (a – b)) 2
(a + a – b) = (2a –b) 2
Ejemplo 2:
(x + y) 2 – 2(x+ y)(a + x) + (a + x) 2
Raíz cuadrada de (x + y)2 =(x + y)
Raíz cuadrada de (a + x) 2 = (a + x)
Doble producto sus raíces
(2 X (x + y) X (a + x)) = 2(x +y)(a + x) (cumple)
R: ((x +y) – (a + x)) 2
(x + y – a – x) 2 = (y – a) 2
CASO IV
DIFERENCIA DE CUADRADOS PERFECTOS
Ejemplo 1:
X2 - y 2
x y = Raíces
Se multiplica la suma por la diferencia
10mn2 13y3 = Raíces
Se multiplica la suma por la diferencia
R: = (10mn2 + 13y3) (10mn2- 13y3)
(a - 2b)2 - (x + y)2
Se multiplica la suma por la diferencia
R: = ((a - 2b) + (x + y)) ((a - b) - (x + y))
(a - 2b + x + y) (a -2b - x - y)
Ejemplo 2:
16a10 - (2a2 + 3) 2
4a5 (2a2 + 3) = Raíces
Se multiplica la suma por la diferencia
(4a5 + 2a2 + 3)(4a5 - 2a2 - 3)
CASOS ESPECIALES
COMBINACION DE LOS CASOS III Y IV
Ejemplo 1:
a2 + 2ab + b2 - x2
(a2 + 2ab + b2) - x2
(a + b) 2 - x2
R : (a + b + x)(a + b - x)
Ejemplo 2:
1 - a2 + 2ax - x2
1 - (a2 + 2ax - x2)
1 - (a - x)2
R: (1 - a + x) (1 + a + x)
CASO V
TRINOMIO CUADRADO PERFECTO POR ADICION Y SUSTRACCION
Ejemplo 1:
a4 + a2 + 1
+ a2 - a2
a4 + 2a2+ 1 - a2
(a4 + 2a2+ 1) - a2
(a2 + 1)2 - a2
R: (a2+ a + 1) (a2– a + 1)
254 + 54a2b2 + 49b4
+ 16 a2b2 - 16 a2b2
254 + 70a2b2 + 49b4 - 16 a2b2
(254 + 70a2b2 + 49b4) - 16 a2b2
(5a2 + 7b)2- 16 a2b2
R: (5a2 + 7b2 + 16 ab) (5a2 + 7b2- 16 ab)
(5a2 + 16ab +7b2) (5a2 - 16 ab +7b2)
CASO ESPECIAL
FACTORAR UNA SUMA DE DOS CUADRADOS
Ejemplo 1:
x4+ 64y4
x4 + 64y4
+ 16x2y2 - 16x2y2
x4 + 16x2y2 + 64y4 - 16x2y2
(x4 + 16x2y2 + 64y4) - 16x2y2
(x2 + 8y2)2 - 16x2y2
R: (x2 + 8y2 + 4xy) (x2 + 8y2 - 4xy)
(x2 + 4xy + 8y2) (x2 - 4xy + 8y2)
4m4 + 81n4
+ 36m2n2 - 36m2n24m4 + 36m2n2 + 81n4 - 36m2n2
(4m4 + 36m2n2 +81n4) - 36m2n2
(2m2 + 9n2)2 - 6m2n2
R: (2m2 + 9n2 - 6mn) (2m2 + 9n2 - 36mn)
(2m2 + 6mn + 9n2) (2m2 - 6mn + 9n2)CASO VI
TRINOMIO DE LA FORMA
x2 + bx + c
x2 + 7x + 10
R :( x + 5 ) ( x + 2 )
n2 + 6n – 16
R: ( n + 8 ) ( n – 2 )
CASOS ESPECIALES
Ejemplo 1
X8 – 2x4 – 80
R: ( x4 – 10 ) ( x4 + 8 )
R: (( m – n) + 8 ) ((m – n) – 3 )
( m – n + 8 ) (m – n – 3 )
CASO VII
TRINOMIO DE LA FORMA
ax2 + bx + c
Ejemplo 1:
2x2 + 3x – 2
(2) 2x2 +(2) 3x –(2) 2
= 4x2 + (2) 3x – 4
= (2x + 4 ) (2x – 1 )
2 x 1
R= (x + 2) (2x – 1)
Ejemplo 2:
16m + 15m2 – 15
15m2 + 16m – 15
15(15m2) +(15) 16m –(15) 15
= 225m2 + (15) 16m – 225
= (15 m + 25 ) ( 15 m – 9 )
5 x 3
R= ( 3m + 5 ) ( 5m – 3 )
CASOS ESPECIALES
Ejemplo 1:
6x4 + 5x2 – 6
(6) 6x4 + (6)5x2 – (6) 6
36x4 + (6)5x2 – 36
= (6x2 + 9 ) (6x2 – 4 )
3 x 2
= (2x2 + 3) (3x2 – 2)
6m2 – 13am – 15a2
(6) 6m2 – (6) 13am – (6)15a2
36m2 – (6) 13am – 90 a2
CASO VIII
CUBO PERFECTO DE BINOMIOS
Ejemplo 1:
a3 + 3a2 + 3a + 1
Raíz cúbica de a3 = aRaíz cúbica de 1 = 1
Segundo término= 3(a)2(1) = 3a2
Tercer término = 3(a)(1)2 = 3a
R: (a + 1)3
Ejemplo 2:
64x9 – 125y12 – 240x6y4 + 300x3y8
64x9 – 240x6y4 + 300x3y8 – 125y12Raíz cúbica de 64x9 = 4x3
Raíz cúbica de 125y12 = 5y4
Segundo término= 3(4x3)2(5y4) = 240x6y4
Tercer término = 3(4x3)(5y4)2 = 300x3y8
CASO IX
SUMA O DIFERENCIA DE CUBOS PERFECTOS
Ejemplo 1:
1 + a3
(1 + a) (12 – 1(a) +( a)2)
R:(1 + a) (1 – a + a2)
(x – 3 ) ((x)2 + (x)3 + (3)2)
CASOS ESPECIALES
Ejemplo 1:
1 + (x + y)3
(1 +(x + y) (12 – 1(x + y) +(x + y)2)
R:(1 + x + y) (1 – (x + y) + (x + y)2)
(1 + x + y) (1 – x – y + x2 + 2xy + y2)
(m – 2)3 + (m – 3)3
((m – 2) + (m – 3) ((m – 2)2 – ((m – 2) (m – 3) + (m – 3)2)
R: (m – 2+ m – 3) ((m2 – 4m + 4) – ((m – 2) (m – 3)) + (m2 – 6m + 9))
(2m – 5) (m2 – 4m + 4) – (m2 – 3m – 2m + 6) + (m2 – 6m + 9))
(2m – 5) (m2 – 4m + 4– m2 + 3m + 2m – 6 + m2 – 6m + 9)
(2m – 5) (m2 – 5m +7)
CASO X
SUMA O DIFERENCIA DE DOS POTENCIAS IGUALES
Ejemplo 1:
a5 + 1
a5 + 1 = a4 – a3 + a2 – a + 1
a + 1
m7 – n7
m7 – n7 = m6 + m5n + m4n2 + m3n3 + m2n4+ mn5 + n6
m – n