lunes, 27 de junio de 2016

  Notación científica

La notación científica es un recurso matemático empleado para simplificar cálculos y representar en forma concisa números muy grandes o muy pequeños. Para hacerlo se usan potencias de diez


Básicamente, la notación científica consiste en representar un número entero o decimal como potencia de diez. 

En el sistema decimal, cualquier número real puede expresarse mediante la denominada notación científica.
Para expresar un número en notación científica identificamos la coma decimal (si la hay) y la desplazamos hacia la izquierda si el número a convertir es mayor que 10, en cambio, si el número es menor que 1 (empieza con cero coma) la desplazamos hacia la derecha tantos lugares como sea necesario para que (en ambos casos) el único dígito que quede a la izquierda de la coma esté entre 1 y 9 y que todos los otros  dígitos aparezcan a la derecha de la coma decimal. 

Es más fácil entender con ejemplos:

732,5051  = 7,325051 • 102  (movimos la coma decimal 2 lugares hacia la izquierda)

−0,005612  =  −5,612 • 10−3  (movimos la coma decimal 3 lugares hacia la derecha).

Nótese que la cantidad de lugares que movimos la coma (ya sea a izquierda o derecha) nos indica el exponente que tendrá la base 10 (si la coma la movemos dos lugares el exponente es 2, si lo hacemos por 3 lugares, el exponente es 3, y así sucesivamente.
  
Nota importante:
Siempre que movemos la coma decimal hacia la izquierda el exponente de la potencia de 10 será positivo.
Siempre que movemos la coma decimal hacia la derecha el exponente de la potencia de 10 será negativo.

Otro ejemplo, representar en notación científica: 7.856,1
1. Se desplaza la coma decimal hacia la izquierda, de tal manera que antes de ella sólo quede un dígito entero diferente de cero (entre 1 y 9), en este caso el 7.
7,8561
La coma se desplazó 3 lugares. 

2. El número de cifras desplazada indica el exponente de la potencia de diez; como las cifras desplazadas son 3, la potencia es de 103.

3. El signo del exponente es positivo si la coma decimal se desplaza a la izquierda, y es negativo si se desplaza a la derecha. Recuerda que el signo positivo en el caso de los exponentes no se anota; se sobreentiende.
Por lo tanto, la notación científica de la cantidad 7.856,1 es:
7,8561 • 103

Operaciones con números en notación científica

Multiplicar
Para multiplicar se multiplican las expresiones decimales  de las notaciones científicas y se aplica producto de potencias para las potencias de base 10.
Ejemplo:

(5,24  • 106) • (6,3  •  108)  = 5,24 • 6,3  • 106 + 8  = 33,012 •  1014  =  3,301215
Veamos el procedimiento en la solución de un problema:
Un tren viaja a una velocidad de 26,83 m/s, ¿qué distancia recorrerá en 1.300 s?
1. Convierte las cantidades a notación científica.
26,83 m/s  = 2,683 • 101  m/s
1.300 s  = 1,3 • 103  s
2. La fórmula para calcular la distancia indica una multiplicación: distancia (d)  = velocidad (V)  x tiempo (t).
d = Vt
Reemplazamos los valores por los que tenemos en notación científica
d = (2,683 • 101  m/s) • (1,3 • 103 s)
3. Se realiza la multiplicación de los valores numéricos de la notación exponencial,
(2,683 m/s) x 1,3 s  =  3,4879 m.
4. Ahora multiplicamos las potencias de base 10. Cuando se realiza una multiplicación de potencias que tienen igual base (en este caso ambas son base 10) se suman los exponentes.
(101) • (103)  = 101+3  =  104
5. Del procedimiento anterior se obtiene:
3,4879  •  104
Por lo tanto, la distancia que recorrería el ferrocarril sería de
3,4879  • 104  m
La cifra 3,4879 •  10 elevado a 4 es igual a 34.879 metros.

Dividir
Se dividen las expresiones decimales de las notaciones científicas y se aplica división de potencias para las potencias de 10. Si es necesario, se ajusta luego el resultado como nueva notación científica.
Hagamos una división:

(5,24  • 107)
(6,3  •  104)
= (5,24  ÷ 6,3) • 107−4 = 0,831746 • 103 = 8,31746 • 10−1 • 103 = 8,31746 • 102

Suma y resta 
Si tenemos una suma o resta (o ambas) con expresiones en notación científica, como en este ejemplo:


5,83 • 109 − 7,5 • 1010  +  6,932 • 1012  = 
lo primero que debemos hacer es factorizar, usando como factor la más pequeña de las potencias de 10, en este caso el factor será 109 (la potencia más pequeña), y factorizamos: 


109 (5,83  − 7,5 • 101  + 6,932 • 103) = 109 (5,83  −  75  +  6932)  = 6.862,83 • 109
Arreglamos de nuevo el resultado para ponerlo en notación científica y nos queda:

6,86283 • 1012
si eventualmente queremos redondear el número con solo dos decimales, este quedará

6,86 • 1012.

Si tenemos alguna notación científica elevada a un exponente, como por ejemplo


(3 • 106)2
¿qué hacemos?
Primero elevamos (potenciamos) el 3, que está al cuadrado (32) y en seguida multiplicamos los exponentes pues la potencia es (106)2, para quedar todo:

9 • 1012
Ver en Youtube:
http://www.youtube.com/watch?v=_wbIfgyET3Q&NR=1
http://www.youtube.com/watch?v=OZBUVOaY4jc

sábado, 11 de junio de 2016

inecuaciones

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:
<menor que2x − 1 < 7
menor o igual que2x − 1 ≤ 7
>mayor que2x − 1 > 7
mayor o igual que2x − 1 ≥ 7

Inecuaciones equivalentes

Si a los dos miembros de una inecuación se les suma o se les resta un mismo número, la inecuación resultante es equivalente a la dada.
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número positivo, la inecuación resultante es equivalente a la dada.
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número negativo, la inecuación resultante cambia de sentido y es equivalente a la dada.

Resolución de inecuaciones de primer grado

 Quitar paréntesis.
 Quitar denominadores.
 Agrupar los términos en x a un lado de la desigualdad y los términos independientes en el otro.
 Efectuar las operaciones
 Como el coeficiente de la x es negativo multiplicamos por −1, por lo que cambiará el sentido de la desigualdad.
 Despejamos la incógnita.
Obtenemos la solución como una desigualdad, pero ésta también podemos expresarla:
De forma gráfica
Como un intervalo

Resolución de sistemas de inecuaciones con una incógnita

Se resuelve cada inecuación por separado, siendo el conjunto solución del sistema la intersección de los conjuntos soluciones de ambas inecuaciones.

Inecuaciones de segundo grado

Igualamos el polinomio del primer miembro a cero y obtenemos las raíces de la ecuación de segundo grado.

 Representamos estos valores en la recta real. Tomamos un punto de cada intervalo y evaluamos el signo en cada intervalo:
 La solución está compuesta por los intervalos (o el intervalo) que tengan el mismo signo que el polinomio.

Si el discriminante es igual a cero:
  Solución
x2 + 2x +1 ≥ 0(x + 1)2 ≥ 0R
x2 + 2x +1 > 0(x + 1)2 > 0R-1
x2 + 2x +1 ≤ 0(x + 1)2 ≤ 0x = − 1
x2 + 2x +1 < 0(x + 1)2 < 0vacio

Cuando no tiene raíces reales, le damos al polinomio cualquier valor si:
El signo obtenido coincide con el de la desigualdad, la solución es R.
El signo obtenido no coincide con el de la desigualdad, no tiene solución.
 Solución
x2 + x +1 ≥ 0R
x2 + x +1 > 0R
x2 + x +1 ≤ 0vacio
x2 + x +1 < 0vacio

Inecuaciones racionales

Se resuelven de un modo similar a las de segundo grado, pero hay que tener presente que el denominador no puede ser cero.
 Hallamos las raíces del numerador y del denominador.
 Representamos estos valores en la recta real, teniendo en cuenta que las raíces del denominador, independientemente del signo de la desigualdad, tienen que ser abiertas.
Tomamos un punto de cada intervalo y evaluamos el signo en cada intervalo:
La solución está compuesta por los intervalos (o el intervalo) que tengan el mismo signo que la fracción polinómica.

Sistemas de inecuaciones

Inecuaciones lineales con dos incógnitas

Su solución es uno de los semiplanos que resulta de representar la ecuación resultante, que se obtiene al transformar la desigualdad en una igualdad.
 Transformamos la desigualdad en igualdad.
 Damos a una de las dos variables dos valores, con lo que obtenemos dos puntos.
 Al representar y unir estos puntos obtenemos una recta.
 Tomamos un punto, por ejemplo el (0, 0), los sustituimos en la desigualdadSi se cumple, la solución es el semiplano donde se encuentra el punto, si no la solución será el otro semiplano.

Sistemas de inecuaciones lineales con dos incógnitas

La solución a este sistema es la intersección de las regiones que corresponden a la solución de cada inecuación.
 Representamos la región solución de la primera inecuación.
 Representamos la región solución de la segunda inecuación.
 La solución es la intersección de las regiones soluciones.

miércoles, 8 de junio de 2016

Combinaciones y Permutaciones

¿Qué diferencia hay?

Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:
"Mi ensalada de frutas es una combinación de manzanas, uvas y bananas": no importa en qué orden pusimos las frutas, podría ser "bananas, uvas y manzanas" o "uvas, manzanas y bananas", es la misma ensalada.
   
"La combinación de la cerradura es 472": ahora importa el orden. "724" no funcionaría, ni "247". Tiene que ser exactamente 4-7-2.
Así que en matemáticas usamos un lenguaje más preciso:
Si el orden no importa, es una combinación.
Si el orden importa es una permutación. 
 
  ¡Así que lo de arriba se podría llamar "cerradura de permutación"!
Con otras palabras:
Una permutación es una combinación ordenada.

Para ayudarte a recordar, piensa en "Permutación... Posición"


Permutaciones

Hay dos tipos de permutaciones:
  1. Se permite repetir: como la cerradura de arriba, podría ser "333".
  2. Sin repetición: por ejemplo los tres primeros en una carrera. No puedes quedar primero y segundo a la vez.

1. Permutaciones con repetición

Son las más fáciles de calcular. Si tienes n cosas para elegir y eliges r de ellas, las permutaciones posibles son:
n × n × ... (r veces) = nr
(Porque hay n posibilidades para la primera elección, DESPUÉS hay n posibilidades para la segunda elección, y así.)
Por ejemplo en la cerradura de arriba, hay 10 números para elegir (0,1,...,9) y eliges 3 de ellos:
10 × 10 × ... (3 veces) = 103 = 1000 permutaciones
Así que la fórmula es simplemente:
nr
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(Se puede repetir, el orden importa)

2. Permutaciones sin repetición

En este caso, se reduce el número de opciones en cada paso.

Por ejemplo, ¿cómo podrías ordenar 16 bolas de billar?
Después de elegir por ejemplo la "14" no puedes elegirla otra vez.
Así que tu primera elección tiene 16 posibilidades, y tu siguiente elección tiene 15 posibilidades, después 14, 13, etc. Y el total de permutaciones sería:
16 × 15 × 14 × 13 ... = 20,922,789,888,000
Pero a lo mejor no quieres elegirlas todas, sólo 3 de ellas, así que sería solamente:
16 × 15 × 14 = 3360
Es decir, hay 3,360 maneras diferentes de elegir 3 bolas de billar de entre 16.
¿Pero cómo lo escribimos matemáticamente? Respuesta: usamos la "función factorial"
La función factorial (símbolo: !) significa que se multiplican números descendentes. Ejemplos:
  • 4! = 4 × 3 × 2 × 1 = 24
  • 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040
  • 1! = 1
Nota: en general se está de acuerdo en que 0! = 1. Puede que parezca curioso que no multiplicar ningún número dé 1, pero ayuda a simplificar muchas ecuaciones.
Así que si quieres elegir todas las bolas de billar las permutaciones serían:
16! = 20,922,789,888,000
Pero si sólo quieres elegir 3, tienes que dejar de multiplicar después de 14. ¿Cómo lo escribimos? Hay un buen truco... dividimos entre 13!...
16 × 15 × 14 × 13 × 12 ...
  = 16 × 15 × 14 = 3360

13 × 12 ...
¿Lo ves? 16! / 13! = 16 × 15 × 14
La fórmula se escribe:
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(No se puede repetir, el orden importa)

Ejemplos:

Nuestro "ejemplo de elegir en orden 3 bolas de 16" sería:
16! = 16! = 20,922,789,888,000 = 3360



(16-3)! 13! 6,227,020,800
¿De cuántas maneras se pueden dar primer y segundo premio entre 10 personas?
10! = 10! = 3,628,800
= 90



(10-2)! 8! 40,320
(que es lo mismo que: 10 × 9 = 90)

Notación

En lugar de escribir toda la fórmula, la gente usa otras notaciones como:

Combinaciones

También hay dos tipos de combinaciones (recuerda que ahora el orden no importa):
  1. Se puede repetir: como monedas en tu bolsillo (5,5,5,10,10)
  2. Sin repetición: como números de lotería (2,14,15,27,30,33)

1. Combinaciones con repetición

En realidad son las más difíciles de explicar, así que las dejamos para luego.

2. Combinaciones sin repetición

Así funciona la lotería. Los números se eligen de uno en uno, y si tienes los números de la suerte (da igual el orden) ¡entonces has ganado!
La manera más fácil de explicarlo es:
  • imaginemos que el orden sí importa (permutaciones),
  • después lo cambiamos para que el orden no importe.
Volviendo a las bolas de billar, digamos que queremos saber qué 3 bolas se eligieron, no el orden.
Ya sabemos que 3 de 16 dan 3360 permutaciones.
Pero muchas de ellas son iguales para nosotros, porque no nos importa el orden.
Por ejemplo, digamos que se tomaron las bolas 1, 2 y 3. Las posibilidades son:
El orden importa El orden no importa
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
1 2 3
Así que las permutaciones son 6 veces más posibilidades.
De hecho hay una manera fácil de saber de cuántas maneras "1 2 3" se pueden ordenar, y ya la sabemos. La respuesta es:
3! = 3 × 2 × 1 = 6
(Otro ejemplo: 4 cosas se pueden ordenar de 4! = 4 × 3 × 2 × 1 = 24 maneras distintas, ¡prueba tú mismo!)
Así que sólo tenemos que ajustar nuestra fórmula de permutaciones para reducir por las maneras de ordenar los objetos elegidos (porque no nos interesa ordenarlos):
Esta fórmula es tan importante que normalmente se la escribe con grandes paréntesis, así:
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(No se puede repetir, el orden no importa)
Y se la llama "coeficiente binomial".

Notación

Además de los "grandes paréntesis", la gente también usa estas notaciones:

Ejemplo

Entonces, nuestro ejemplo de bolas de billar (ahora sin orden) es:
16! = 16! = 20,922,789,888,000 = 560



3!(16-3)! 3!×13! 6×6,227,020,800
O lo puedes hacer así:
16×15×14 = 3360 = 560


3×2×1 6

Así que recuerda, haz las permutaciones, después reduce entre "r!"
... o mejor todavía...
¡Recuerda la fórmula!
Es interesante darse cuenta de que la fórmula es bonita y simétrica:
Con otras palabras, elegir 3 bolas de 16 da las mismas combinaciones que elegir 13 bolas de 16.
16! = 16! = 16! = 560



3!(16-3)! 13!(16-13)! 3!×13!

Triángulo de Pascal

Puedes usar el triángulo de Pascal para calcular valores. Baja a la fila "n" (la de arriba es n=0), y ve a la derecha "r" posiciones, ese valor es la respuesta. Aquí tienes un trozo de la fila 16:
1    14    91    364  ...
1    15    105   455   1365  ...
1    16   120   560   1820  4368  ...

1. Combinaciones con repetición

OK, ahora vamos con este...
Digamos que tenemos cinco sabores de helado: banana, chocolate, limón, fresa y vainilla. Puedes tomar 3 paladas. ¿Cuántas variaciones hay?
Vamos a usar letras para los sabores: {b, c, l, f, v}. Algunos ejemplos son
  • {c, c, c} (3 de chocolate)
  • {b, l, v} (uno de banana, uno de limón y uno de vainilla)
  • {b, v, v} (uno de banana, dos de vainilla)
(Y para dejarlo claro: hay n=5 cosas para elegir, y eliges r=3 de ellas.
El orden no importa, ¡y puedes repetir!)
Bien, no puedo decirte directamente cómo se calcula, pero te voy a enseñar una técnica especial para que lo averigües tú mismo.
Imagina que el helado está en contenedores, podrías decir "sáltate el primero, después 3 paladas, después sáltate los 3 contenedores siguientes" ¡y acabarás con 3 paladas de chocolate!
  Entonces es como si ordenaras a un robot que te trajera helado, pero no cambia nada, tendrás lo que quieres.
Ahora puedes escribirlo como (la flecha es saltar, el círculo es tomar)
Entonces los tres ejemplos de arriba se pueden escribir así:
{c, c, c} (3 de chocolate):
{b, l, v} (uno de banana, uno de limón y uno de vainilla):
{b, v, v} (uno de banana, dos de vainilla):
OK, entonces ya no nos tenemos que preocupar por diferentes sabores, ahora tenemos un problema más simple para resolver: "de cuántas maneras puedes ordenar flechas y círculos"
Fíjate en que siempre hay 3 círculos (3 paladas de helado) y 4 flechas (tenemos que movernos 4 veces para ir del contenedor 1º al 5º).
Así que (en general) hay r + (n-1) posiciones, y queremos que r de ellas tengan círculos.
Esto es como decir "tenemos r + (n-1) bolas de billar y queremos elegir r de ellas". Es decir, es como el problema de elegir bolas de billar, pero con números un poco distintos. Lo podrías escribir así:
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(Se puede repetir, el orden no importa)

Es interesante pensar que podríamos habernos fijado en flechas en vez de círculos, y entonces habríamos dicho "tenemos r + (n-1) posiciones y queremos que (n-1) tengan flechas", y la respuesta sería la misma...
¿Qué pasa con nuestro ejemplo, cuál es la respuesta?
(5+3-1)! = 7! = 5040 = 35



3!(5-1)! 3!×4! 6×24

En conclusión

¡Uau, es un montón de cosas que absorber, quizás tendrías que leerlo otra vez para entenderlo todo bien!
Pero saber cómo funcionan estas fórmulas es sólo la mitad del trabajo. Averiguar cómo se interpreta una situación real puede ser bastante complicado.
Por lo menos ahora sabes cómo se calculan las 4 variantes de "el orden sí/no importa" y "sí/no se puede repetir".

sábado, 4 de junio de 2016

Los Diez matemáticos más importantes de la historia.

René Descartes 

nacionalidad: Francés 
Gran hecho: Creó la geometría analítica en el siglo 17.
 

Responsable por representar los números en el gráfico con los ejes cartesianos en su homenage. La geometría analítica revolucionó la matemática, tornando más facil observar relaciones entre números y comprender conceptos abstractos. 
Descartes morió de neumonia en el castillo de la reina de Suécia, que lo contrató como profesor de filosofia.
 

ciencia 




poincare 

Henri Poincaré 
nacionalidad: Francés 
Gran hecho: Inventó el topología algebraica en el siglo 19 

Despues de el, pasó se a clasificar sólidos imaginários como cubos, esperas o cones por medio de teoremas. Com el topología algebraica es posible demonstrar, por ejemplo, como una copa es el deformación de el mitad de un aro. 

Hipotese no comprobada desde 1904 solamente resolvido en 2006.
 


descartes 



matematicos 

Euclides 

Nacionalidad: Grego 
Gran hecho: Fundamentó la geometría en el siglo 3 a.c. 

Su libro Elementos, con los fundamientos de la geometría clasica, ainda es lechura obligatória entre matematicos. En la obra de 23 siglos detrás estan compilados sus axiomas - verdades logicas que valen hacia hoy. Un ejemlo de axioma es : " puede se hacer una reta ligando dos puntos. 

La obra pirma de Euclides es su segundo libro mas traduzido de la historia, detrás tan solamente de el biblía. 





Los Diez matemáticos más importantes de la historia.ciencia 

Al-Khwarizmi 
Nacionalidad: Persa. 
Gran Hecho; Creó las bases teóricas para la algebra moderna en el siglo 8. 

El fundamientó la matemática ocidental, Su obra descreve metodos para resolver equaciones lineares y quadraticas, como enseñan el la escuela hacia hoy. 

El italiano Fibonacci llevó los conocimientos de Khwarizmi para Europa, diseminando los numerales arabicos y algarismos de 0 hacia 9 para representalos.
 



Arquimedes 
Nacionalidad: Grego 
Gran hecho: Aplicó la geometría en practica en el siglo 3 a.c. 

Arquimedes tambíen era inventor . Entre sus trabajos estan el tornillo de Arquimedes, usado ára quitar agua de navios, y la catapulta 



descartes 

matematicos 
Sir Isaac Newton 
Nacionalidad; Inglés 
Gran echo: Crió el calculo en el siglo 17 

Responsable por avanzos cientificos que cambiaran la humanidad, como la leye de la gravitación universal, Newton también era un matematico notable, considerado un de los inventores del calculo- disciplina avanzada de la matematica, enseñada en cursos superiores especificos. Sin el calculo no seria posible medir con precizión el vlolumen de objectos curvos o calcular la velocidad de objectos en aceleración
 

Los Diez matemáticos más importantes de la historia. 


ciencia 

Gottfried Leibniz 

Nacionalidad: Alemán 
Gran hecho: Creó el calculo en el siglo 17. 
No era popular como Newton, pero quien lo conoció compara su genio como DaVinci. Leibniz aprofundó el concepto de grandezas infinitezimales, o sea, infinitamiente pequeñas- que por el nombre hasta puede no parecer, pero son mucho relevantes en la matematica. 

Newton delato Leibniz por plágio, pero quedose comprobado que los dos desarollaron estudios sobre el calculo a un mismo tiempo, llegando a la mismas conclusiones. 




poincare 

descartes 

Évariste Galois 
Nacionalidad: Francés 
Gran Hecho; Creó las estructuras algebriacas en el siglo 19. 

Rebelde y genial, es lo unico matematico cuya la obra no tiene errores, quizá por ser muy corta. Su trabajo principal fue en polinomios y estructuras algebraicas, lo que llevo a solucionar problemas matematicos abiertos desde la antiguidad. 

Espertos creem que si no tuviera morido a los 21 años- en un duelo- seria el numero un de nostra cola





matematicos 

Los Diez matemáticos más importantes de la historia. 
Carl Gauss 
Nacionalidad: Alemán 
Gran hecho: Más completo matemático de la primera mitad del siglo 19 
El "principe de los matematicos" publicó, a los 21, su obra prima sobre teoria de los numeros. Morió a los 77 años como mayor generalista matematico, contribuyendo en areas como estatica, analise, geometría diferencial y geodesia, para citar pocos. 

El extinto billete de diez marcos alemon, tenia un photo de Gauss con una de sus inventos: la curva de Gauss, que para siempre aparesce en graficos estatisticos.
 
ciencia




poincare 

descartes 

Leonad Euler 

Suizo Revolucionó casi toda la matematica en el siglo 18. 
Sus casi 800 libros cementaron campos que serian estudiados futuramente, como topología, y revolucionó casi todos los que ya estuvierón en voga. como calculos y funciones. A solucionar un problema que tenia siete puentes que ligavan 2 islas en la ciudad de Koningsberg, antigua Prussia, fundó la teoria dos grafos, que posibilitó el sugimiento de la topologia y es usada hoy, por ejemplo, para hacer tablas del capeonato brasileño. 


Euler quedó se ciego a los 50 años y pasó sus textos a su hijo, Muchos matematicos avaliamque su trabajo quedo más rico despues que perdió la visón.